Self-affine sets in analytic curves and algebraic surfaces
نویسندگان
چکیده
منابع مشابه
Hyperbolic Algebraic and Analytic Curves
A hyperbolic algebraic curve is a bounded subset of an algebraic set. We study the function theory and functional analytic aspects of these sets. We show that their function theory can be described by finite codimensional subalgebras of the holomorphic functions on the desingularization. We show that classical analytic techniques, such as interpolation, can be used to answer geometric questions...
متن کاملOverlapping Self-affine Sets
We study families of possibly overlapping self-affine sets. Our main example is a family that can be considered the self-affine version of Bernoulli convolutions and was studied, in the non-overlapping case, by F. Przytycki and M. Urbański [23]. We extend their results to the overlapping region and also consider some extensions and generalizations.
متن کاملAnalytic and Algebraic Properties of Canal Surfaces ?
The envelope of a one-parameter set of spheres with radii r(t) and centers m(t) is a canal surface with m(t) as the spine curve and r(t) as the radii function. This concept is a generalization of the classical notion of an offset of a plane curve. In this paper, we firstly survey the principle geometric features of canal surfaces. In particular, a sufficient condition of canal surfaces without ...
متن کاملQuasihomogeneous analytic affine connections on surfaces
We classify torsion-free real-analytic affine connections on compact oriented real-analytic surfaces which are locally homogeneous on a nontrivial open set, without being locally homogeneous on all of the surface. In particular, we prove that such connections exist. This classification relies in a local result that classifies germs of torsion-free real-analytic affine connections on a neighborh...
متن کاملμ-Bases of Algebraic Curves and Surfaces
Pisokas et Stellina Sideri. Grâcè a eux j'ai passé une année merveilleusè a Nice et j'espère que nous partagerons encore plein de bons moments ensemble. Finalement, je remercie de tout mon coeur ma m` ere Gerda et mon frère Christoph pour leur amour et leur soutien. Je leur serai toujours reconnais-sant pour tout ce qu'ils ont fait pour moi.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Academiae Scientiarum Fennicae Mathematica
سال: 2018
ISSN: 1239-629X,1798-2383
DOI: 10.5186/aasfm.2018.4306